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ABSTRACT

A compressible flow code that can predict the nonlinear unsteady aerodynamics associated with transonic
flows over oscillating cascades is developed and validated. The code solves the two-dimensional, unsteady Euler
equations using a time-marching, flux-difference splitting scheme. The unsteady pressures and forces can be
determined for arbitrary input motions, although this paper will only address harmonic pitching and plunging
motions. The code solves the flow equations on a H-gridwhich is allowed to deform with the airfoil motion.
Predictions arepresented for both fiat plate cascades and loaded airfoil cascades. Results are compared to fiat
plate theory andexperimental data. Predictions are also presented for several oscillating cascades with strong
normal shocks where the pitching amplitudes, cascade geometry and interblade phase angles are varied to
investigate nonlinear behavior.

NOMENCLATURE

A Roe matrix

c chordlength

C t lift coefficient, cptv

C,, moment coefficient, c2_v

p-p_

CP pressure coefficient, 2,_,,v 2,

• P--P,

_t2P pressure difference coefficmnt,p_l

F,G,H flux vectors

h _ amplitude of oscillation for plunging

motions based on chordlength

i incidence angle (Figure 1)
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Subscripts

1,2

-b,-

L,R

r

Superscripts

n

imaginary part of { }

reduced frequency based on semi-chord

lift

moment

Mach number

magnitude of { }

number of airfoils in cascade

static pressure

total pressure

dependent variable vector

real part of { }

cascade spacing (Figure 1)

time

airfoil thickness-to-chord ratio

total velocity

spatial coordinates

amplitude of oscillation for pitching motions

stagger angle (Figure 1)

curvilinear coordinate directions

fluid density

interblade phase angle

conditions at inlet/exit

upper/lower surfaces on airfoil

left/right of an interface

condition at acoustic resonance

time index

INTRODUCTION

The accurate prediction of flutter and fatigue in turbomachinery blades is always essential for designers in the
propulsion industry. Designing against flutter and fatigue failures becomes a challenge as structural designs
become less conservative. Examples include recent advanced turboprops and ducted propellers. Flutter
becomes more of a problem with increased sweep of the blades. Also, since these desl_,s operate at an angle
of attack with respect to the flight direction, periodic forces on the blades must be modeled. Recent computa-
tions from an unsteady, three-dimensional Euler code indicate that the unsteady power per blade may vary by
as much as eighty percent of the meanpower for an advanced turboprop (SR-7) operating with a 4.6 degree
inflow angle (ref.1). The installation ot struts and wings near the propeller also introduces unsteady forces that
may cause fatigue failures. Since these flows are typically transomc and highly three-dimensional, the accurate
prediction of the steady and unsteady flowfields can be difficult and time consuming.
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A two-dimensionaloscillatingcascadeis often used to model the unsteady forces on an airfoil due to flutter or
forced response. In the case of forced response, a simulation of the once-per-revolution variation of blade inci-

dence angle can be modeled for a propeller at angle of attack. For flutter, harmonic anal_sis is often used to
determine when the flow is doing positive work on the blades, which can cause an instability. Special cases from
a two-dimensional analysis have exact solutions available that can be used to test a new idea or algorithm.
Using fiat plates instead of airfoils allows for exact comparisons with small-perturbation theory. This is a neces-
sary step for flutter and forced response analysis due to the limited amount of experimental data available for
transomc flows at realistic forcing frequencies.

There are a number of numerical and analytical methods available for addressin 8 the two-dimensional, oscil-
lating cascade problem. Time linearized analysis has been used the most in aeroelasticity for current designs
since it does a reasonably good job near design conditions and is inexpensive to run. Another advantage to
time-linearized approaches is exact specification of the far-field boundary conditions. Codes in this category
include the work by Smith (ref.2), which is valid for flat plates in subsonic flow, and Verdon (ref.3), which
accounts for blade loading effects in transonic flow. Whde the latter solves the linearized full-potential equa-
tions, work has also been reported by Hall and Crawley (ref.4) that solves the linearized Euler equations.
Time-marching schemes are also available that solve the full-potential (ref.5), Euler (refs. 6,7,8,9), and
Navier-Stokes (ref.7) equations. Two fundamental problems exist for the time-marching codes: 1.) Specifica-
tion of correct unsteady inflow/outflow boundary conditions and 2.) Reduction of computational time. In spite
of these problems, reasonable solutions have been obtained when compared to linear theory and experimental
data. The time-marching codes, although expensive to run, gives researchers a way to investigate nonlinear
solutions. The prediction of the nonlinear flowfield is expected to be important in transonic llow with moderate

shock motion. Since it is not possible to assess these effects with a linear code, the time-marchin 8 codes that
solve the nonlinear flowfield are a necessary research tool. The reader is referred to a recent rewew by Bendik-
sen (ref.10), which identifies applications where nonlinear phenomena may be important. Reference 10 also
identifies more codes that have been developed for modeling oscillating cascade flows.

The objective of this work is to develop and validate a compressible flow code that can predict the nonlinear
unsteady aerodynamics associated with transonic flows over oscillating cascades. Tile present code solves the
unsteady Eulcr equations using the time-marching, flux-difference splitting scheme of Whitfield, et al. (ref.ll)
usin_ blocked grias. The grid motion was added to the code for modelinlg the oscillating cascade problem.
While other Euler codes (refs. 6,7,8,9) exist for predicting these flows, this is the first application of a flux-
splitting algorithm. The code solves the flow equations using one or more H-grid, which are allowed to deform
with the airfoil motion similar to the method developed in reference 7. The unsteadypressures and blade
forces can be determined for arbitrary input motions, although this paper will only address harmonic pitching
and plunging motions. Predictions are presented in this work for both fiat plate cascades and loaded airfoil
cascades. Rcsults are compared to flat plate theory and experimental data. Predictions are also presented for
several oscillating cascades with strong normal shocks where the pitching amplitudes, cascade geometry and
interblade phase angles are varied to investigate nonlinear behavior.

GOVERNING EQUATIONS AND NUMERICAL ALGORITHM

Only inviscid Euler solutions are sought in the present analysis, although viscous effects must ultimately be
included to properly account for all pertinent flowfield features. This expedites the solution process and makes
possible a one-to-one comparison between results obtained herein and those generated by previous methods,
ooth Euler and potential. Therefore, the unsteady three-dimenslonal Euler equations written in conservative
differential form are used and are transformed from a Cartesian to a time-dependent curvilinear reference
frame. This transformation process and the ensuing numerical method are presented in detail in references
11-15. Hence the following discussion merely highlights the development otthe methodology and the reader is
encouraged to consult the above references for more detail.

The transformed equations can be written in vector form as

OQ OF ,_G 3tt
--+--+--+--=0 (1)
ax a_ aq a_

where the dependent variable vector Q and fluxes F, G, and H are presented in references 11-14. The present

ap_,lications will only consider two-dlmensional solutions to these equations, but three-dimensional formulation
will be presented here for generality. The approach taken in the present effort is based on the integration of



these equations over a discrete set of contiguous cells (volumes) in computational space and is generally
referred to as a finite volume method. This discretizatmn results in the following expression where cell centers
are denoted as ij,k:

a_Q÷8,___{÷6,___f_c÷6k__En,o (2
aT A_ An At

With A_ = Aq = At = 1 (by definition),.this becomes

aQ
c)'C -(6_F+fjG+6kH) (3)

where

8.(.) = (.)..l,z - (.).-1/2. (4)

A consequence of the finite volume formulation is that components of the dependent vector Q within a [_articu-
lar cell represent average values over that cell. However, it is evident from the above representation of nux
differences that a method is needed to allow these fluxes to be accurately represented at cell faces. As
discussed in reference 11, the method used in the present effort is based on the one-dimensional approximate
Riemann solver of Roe (ref.16) at cell interfaces for each coordinate direction. The method uses as a basis the
following approximate equation which represents a quasilinear form of a locally one-dimensional conservation
law:.

aq +--A(qt,q _ aqa-T )Txx=° (s)

where q is the untransformed dependant variable vector, and A (q ,, q k )is a constant matrix representative of
local cell interface conditions and is constructed using so-called "Roe averaged" variables. The determination of
the elgensystem of A and knowing that the change in dependent variables across an interface is proportional to
the right eigenvectors allows first order flux formulae to be constructed. This approach of extracting flowfield
information from characteristically dictated directions is commonly referred to as flux difference splitting (FDS)
and is applicable to multidimensional space, so long as the assumption is made that all wave propagation occurs
normal to a particular cell interface. Toprovide higher order spatial accuracy, a corrective flux is appended to
the first order flux discussed above. In addition, in order to control dispersive errors commonly encountered
with higher order schemes, so-called "iimiters" are used to limit components of the interface flux resulting in
total variation diminishing (TVD) schemes. All solutions presentedhereln were obtained using the basic algo-
rithm developed in reference 11, which is third-order accurate spatially and second-order accurate in time.

GRID

The flow eguations are solved within one or more passage centered H-grids, where the number of grids
depends on the interblade phase angle _(seeequation 6 below). Within a typical grid block, the lower computa-
tional boundary contains the upper surface of one blade in the cascade, while the u[aper computational bound-
ary contains the lower surface corresponding to the adjacent blade. Periodic bounaaries in the blade-to-blade
direction extend upstream and downstream from the blade surfaces. The inlet boundary corresponds to the left
computational boundary and the outflow corresponds to the right boundary (Figure la). The grid was gener-
ated using a two-dimensional version of the IGB code developed by Beach (ref.17) for turbomachinery. This
grid generator gives the user good flexibility and control over the features in the H-grid. This includes modeling
rounded leading and trailing edges (which Is important for predicting shocks in transonic flows), grid spacing
near the airfoil, andglobal or local smoothing. The grid generator runs interactively on an IRIS-4D workstation
and saves a journal file for grid reproduction. Once a grid is generated for a single blade passage, it is stacked
to form a cascade for multiple blades.

For unsteady flows, where the blades undergo harmonic oscillations, the number of airfoils (or grid blocks)
needed for modeling an infinite cascade is a function of the inter-blade phase angle (o) and is obtained using the
following relationships:



N=-- , where 0<o-<2_ (6)
o

For example, a o = 2_ case (in-phase motion) requires one block, o = rt two blocks, etc. One can see how the
number of blocks required to model all interblade phase angles can become quite large. Fortunately, the range
of interblade phase angles of interest for flutter analysis is limited by the number of blades on the rotor. For a
propfan, this is usually between 8 and 12 blades. Several researchers have investigated methods for reducing
the computational domain to a single or several passages. One method (ref.5) uses a time shearing approach
developed by Giles (ref.18) to specify the upper and lower periodic boundaries for a single passage. Another
technique (ref.19) uses an influence coeffioent approach and uses information from one airfoil oscillating in the
cascade to determine the unsteady pressures as though all airfoils were oscillating. The results from both of
these methods look promising, but they do introduce ap.proximations to the solutions. For now, all airfoils will
be oscillated and exact periodic boundary conditions wdlbe imposed to eliminate a possible source for error.

The code can simulate both pitching and plunging motions, either individually or in combination. The compu-
tational grid is deformed such that the airfods follow the prescribed motion and the grid near the center of the
passage remains fixed. This is done using weighting functions and is similar to the method presented in
reference 7 for C-grlds, except the current method is for H-grids. For a given blade passage, the upper and
lower boundaries containing the airfoil surfaces move according to an input function (whicn may come from the
displacements calculated from a structural model). For a specified interblade phase angle, the grid deforms for
a single blade passage for one cycle of oscillation and saves the grids for N blades corresponding to o. Each
grid is stored on the Solid State Storage Device (SSD) on the CRAY computer. Once the initial grid has been
defined for all blade passages, the code time-marches the grid and the flow solution for harmonic oscillations,
preserving the specified interblade phase angle.

BOUNDARY CONDITIONS

Because the computational grids used in the present study employ multiple blocks, a discussion pertaining to
how flowfield con&tions are imposed along the boundaries of the computational domain is needed.

Single Blade Passage (o = O)

Figure la represents a single grid block used for zero interblade phase angle cases. The airfoil upper and
lower surfaccs are located along lines B-C and F-G, respectively, where solid wall boundary conditions are
employed. (Phantom cells were used to enforce all boundary conditions in the present studies). Lines A-E and
D-H represent subsonic inflow and outflow boundaries, respectively, where conditions were set using character-
istic variable boundary conditions, as derived in references 20 and 21. The procedure was to fix the l_ncoming
flow incidence angle and adjust the back pressure (uniform across D-H) until the average Mach number along
the inflow boundary (A-E) matched some predetermined value. Periodicity was imposed between lines A-B
and E-F, and lines C-D and G-H, respectively.

Multiple Blade Passages (o _ O)

For non-zero interblade phase angles (ie. multiple blocks), additional grid blocks (passages) are stacked, as

shown in Figure lb for o= 180 degrees. For this case, periodicity is enforced between lines A-B and I-J, and
lines C-D and K-L, respectively. Also lines A-I and D-L become inflow and outflow boundaries, respectively.
Continuity of flowfield variables is imposed between adjacent blocks (E-F and G-H) by simple injection (see
Figure lb with regard to the use of interior and phantom cells of adjacent blocks). A similar procedure is fol-
lowed for other interblade phase angles which require additional blade passages (equation 6).



RESULTS AND DISCUSSION

Code validation is done by comparing solutions for flat plate cascades with predictions from small-
perturbation methods. Also, comparisons with experimental data are included for a loaded biconvex airfoil cas-
cade. Solutions are then presented that predict the onset of nonlinear behavior based on variation of the
oscillation amplitude.

Code V.ali ,dation

All of the Euler solutions were executed on a 121 x 41 (streamwise x pitchwise) grid, typical to the grid shown
in Figure la. Coarser grids were tried and gave satisfactory results, however a finer grid is used here to elimi-
nate grid resolution as a source for error. The inlet boundary is located 1.5 chordlengths upstream from the
stagger line and uses 35 nodes in the streamwise direction. There are 60 points along each surface of the airfoil
and clustered about the leading and trailing edges. The grid extends downstream 1.5chordlengths from the

trailing edge. The solutions were executed on a CRAY-YMP computer and require about Sx 1 0-s CPU sec-

onds per grid point per iteration. A constant time step is used, which means the CFL number varies as a func-
tion of the jgrid spacing. In regions where the grid is clustered, the CFL number increases significantly. For the
grids used m the following results, a maximum CFL number of 60 is used, which occurs near the leading and
trailing edges. The CFL numbers quickly drop to values ranging from 2 to 6 in regions away from the leading
and trailing edges. For several special cases, the m_mum CFL number is lowered to 10 in order to assess
dispersion errors, which corresponds to most of the grid cells having a CFL number less than one.

Flat Plate Cascades

i) Pitching Motions

For a cascade of flat plates in subsonic flow, the small-perturbation theory of Smith (ref.2) can be used for
exact comparisons. The geometry from the experiment in reference 19 is used, except flat plates are used
instead of the biconvex airfoils. A test case has been selected from the experiment as follows: M _ -- 0.80, k =

0.32, V = 45 degrees, s/c = 1.538, i = 0 degrees, a j = 1.2 degrees.

The lift coefficient versus time is shown in Figure 2 for o = -90 degrees and is typical of other results from the
Euler code. The results from each cycle of oscillation are read into a fast Fourier transform (FFT) subroutine
to obtain the harmonic content and determine the solution periodicity. The airfoils are pitched about the mid-
chord for three cycles of oscillation, which was found to be long enough for the solutions to become periodic in
time. Euler solutions were found for o = -90, 0, and 90 degrees. The first harmonic pressure difference

coefficient distribution are presented in Figures 3 and 4 for o = -90 and 90 degrees, respectively, which are typi-

cal of the bcst and worse agreement with theory. The results from the theory of Smith are also plotted for
comparison. The real and imaginary parts of the first harmonic moment coefficient are given in Table I.

An investigation was done for o = 90 by lowering the pitching amplitude to 0.1 degrees to make sure that the
small-perturbation assumption was not violated. This was found to give only slightly better predictions than the
higher amplitude (see Table I). One possible reason for discrepancies as a function ofois the specification of
the far-field boundary conditions, as described below.

Buffum, et al. (ref.19) has calculated the sub-resonant and super-resonant regions for this cascade based on a
method by Smith (ref.2). The interblade phase angles corresponding to resonant conditions are calculated as
follows based on the flow upstream of the cascade:

2kMls r

The resonant interblade phase angles for the present cascade are ar = -31.7 degrees and ar = 178.4 degrees.

The interblade phase angles that lie between these values are super-resonant, which means that the pressure
waves will propagate upstream and downstream to infinity without decay. Interblade phase angles above and
below the higher and lower resonant values are sub-resonant, where pressure waves decay with distance from
the cascade. For the current test case; when o = -90 degrees, the cascade is sub-resonant. This is a condition
where the numerical results are expected to be relatively insensitive to reflections from the inflow and outflow



boundaries,assumingtheboundariesaresufficientlyremovedfromthecascade.Ontheotherhand,wheno =
90 degrees, the cascade is super-resonant, and the results become sensitive to the boundary conditions used for
both the inflow and outflow.

ii) Plunging Motions

Results are presented for a flat plate cascade undergoing plunging motions and are compared with the theory
of Smith (ref.2) and Verdon's LINFLO code (ref.22). The test cases were selected from Verdon and Casper
(ref.22) for comparisons of the unsteady pressure distributions: M _ = 0.70, k = 0.50, V = 45 degrees, s/c= 1., i

= 0, (and h _ = 0.01 for the Euler solutions). Figure 5 shows comparisons for cr = 0, which corresponds to a

super-resonant condition and Figure 6 shows comparisons for o = 180 degrees, which is sub-resonant. As for
the pitching motion cases, the agreement between the Euler predictions and the small-perturbation methods is
not as good for super-resonant conditions. However, the overall agreement is good between all three prediction
methods.

Biconvex Airfoil Cascades

Solutions are now presented for a cascade of biconvex airfoils, where experimental data (ref.19) are available
for comparisons at various Mach numbers and reduced frequencies. The experimental cascade consists of four
biconvex airfoils with a thickness-to-chord ratio (t/c) of 0.076, c/s = 0.65, h' = 45 degrees, and i --- 2 degrees.

In the Euler solutions, the lcadin._ edge is rounded to match the experimental airfoil. The trailing edge is mod-
eled as a wedge which causes a shght increase in the chord length.

First, a steady-state prediction is run with the Euler code to ensure that the specified back pressure gives the
desired inflow properties. An outflow static back pressure (p 2/P o_ of 0.6630 was found to give an average

inlet Mach number (M _) of 0.806. The steady pressure distributions are shown in Figure 7 for both the exper-

imental data and the Euler code predictions. The agreement is good except near the leading edge on the lower
surface. It should be noted that similar agreement is reported in reference 19 using a different Euler code
reported in reference 7.

The same back pressure was then used in the unsteady predictions, which are shown in Figures 8 to 9 for the
same respective interbladephase angles as the previous fiat plate cascade with pitching motions about the mid-
chord. The addition of loading to the cascade tends to change the unsteady loading over a good portion of the
chordlength. The results from the Smith theory are repeated in these figures for relative comparisons even
though they are valid only for flat plates. The experimental data are only included for o = -90 degrees since the
results for o = 90 degrees are thought to be unreliable due to problems with the experimental cascade (ref.19).
The Euler solutions and the experimental data show the same qualitative agreement, but differ quantitatively.
The addition of loading causes a hump to occur in the pressures along the chord. Obviously, flat-plate theory
cannot predict these effects and does not exhibit the same trends. Comparisons of the Euler solutions with the
fiat plate cases in Figures 3 and 4 demonstrate the difference in the unsteady pressure distributions due to load-
ing. Additional cases were ran for M _ = 0.55 and k = 0.20, but are not shown. These cases show the loading

effects diminishing and the quantitative between the experiment, theory and the Euler solutions to be quite
good for o = -90, 0, and 90 degrees.

Linear/Nonlinear Behavior

One reason for developing a code capable of capturing nonlinear fluid behavior to solve oscillating cascade
problems is to investigate and identify nonlinear/linear boundaries. There has been little work done to date to

determine where linear theories cannot be a.pplied to unsteady cascade flows. Dowell, et al. (ref.23) have stu-
died nonlinear behavior in unsteady transomc flows for isolated airfoils. We will now extend this type of investi-
8ation to cascade flows. Two possible mechanisms for nonlinear behavior include strong shocks and separated
flows. While the latter is beyond the scope of thispaper, the present code can be used to investigate nonlinear
behavior duc to shock motions in oscillating cascades. The following results are a sample of sucn an investiga-
tion for limited cascade geometries and flow conditions.
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Case1

It isdesirableto findaflowforacascadewithastrongnormalshocklocatedsomewherealongthechordline
oftheairfoil.Thishasbeendoneusingthecascadeofbiconvexairfoilsusedintheprevioussectionandlower-
ingthebackpressure(p z/P o_= 0.61) until a strong normal shock develops. The steady pressure distribution

for this case is shown in Figure 10 and corresponds to: M1 = 0.90, V = 45 degrees, s/e = 1.538, and i = 2

degrees. The blades are now oscillated in torsion about their mid-chord for/c = 0.32 and o = 0 for various

.amplitudes of oscillation. If the flowfield is linear, the force coefficients would be a linear function of the pitch-
mg amplitude. Figure 11 shows a prediction for the first harmonic of the dynamic moment coefficient magni-
tude versus a 1. The smaller amplitudes (0.1 and 0.2) are expected to be linear and are the baseline for the

"linear" solution shown in the figure. The predictions become nonlinear for amplitudes greater than about one
degree. One can argue, however, that for all practical purposes, the solution can be treatedas linear for even
larger amplitudes. Figure 12 shows the normalized unsteady pressure difference distributions for the corre-
spondingamplitudes of oscillation. To no surprise, the regions near the shocks are where the nonlinearity
occur, whereas the regions away from the shocks are reasonably linear. Note that this behavior is very similar
to the results reportedby Dowell, et al. (ref.23) for isolated airfoils.

Case 2

For this case, the solidity is increased by about a factor of two from the above case. As the solidity is
increased, it is harder to find a flow condition with a strong normal shock that does not choke the passage.

Using p 2 / P o_= 0.690, M _ = 0.72, ¥ = 45 degrees, s / c = 0.766, i = 2 degrees,/c = 0.32; a mean flow with

almost the maximum possible flow rate before choking the flow is obtained. Results from a study of the effects
of pitching amplitudes are shown for o = 0 degrees in Figure 13a and o = 180 degrees in Figure 13b. For o = 0
degrees, the trends are very similar to those found in the lower solidity cascade; pitching amplitudes greater
than about one degree begin to deviate from linearity. However, when o = 180 degrees, the deviation from
linearity occurs for a pitching amplitude somewhere between 0.2 and 0.5 degrees. Inspection of the predicted
flowfield reveals that the passages are chokingover portions of the pitching cycle. This means that a small
pitching amplitude can cause the cascade to choke intermittently when the mean flow is at the onset of choking.
Severalcases (not presented) were ran for various interblade phase angles at a slightly lower inlet Mach num-

ber and show the onset of non-linear behavior to be similar to case 1, for both o = 0 and o = 180 degrees.

Further pararnetric studies are needed for different blade geometries, pitching frequencies, motions, solidi-
ties, etc. to verify that the cases presented here are typical. For the flutter problem, the solutions of interest
have small amplitudes and all of the solutions presented here for small oscdlation amplitudes were found to be
linear. A possible exception is when the response from the blade structure is includedand a limit cycle behavior
may require modeling higher amplitudes where the flow is nonlinear. In forced response problems, if the effec-
tive inflow angle to the blade changes by more than one degree, there may be nonlinearities in the unsteady
flowfield when strong shocks are present, especially when the blade passages choke.

CONCLUSIONS

A code has been developed to solve the unsteady Euler equations for oscillating cascades. The code deforms
the computational grid to model arbitrary motions for the airfoils. Predictions from the code for harmonically
oscillating airfoils are compared to both theory and experimental data. The predictions for a cascade of flat
plates with small pitching and plun_g'n amplitudes ....are compared to small- erturbation theory and shows good
overall agreement, except for certain cases operating m a super-resonant fil_wfleld. Predictions are also com-

pared to experimental data and show qualitative agreement. However, quantitative agreement is a function of
the interblade phase angle and inflow Mach number.

An investigation of the nonlinear behavior in an oscillating cascade was done by varying the amplitude of
pitching for a limited number of cases. Mean flows were selected with strong normal shocks on both the upper
and lower surfaces of the airfoils. Based on the predicted unsteady moment coefficient, the responses become
nonlinear for amplitudes greater than about one degree. The pressure distributions reveal that nonlinearities
are most dominant near the shocks. Stronger nonlinearities occur when the blade passages choke over portions

8



ofthepitchingcycle.Intermittent choking can occur for small pitching amplitudes when the mean flow is at the
onset of choking and is a function of the interblade phase angle. This code is a useful tool for identifying non-
linear flowfield m oscillating cascades.
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Table 1. Unsteady moment coefficients about mid-chord,
oscillating flat plate cascade, M _- 0.80, k - 0.32,

¥=45",s/c= 1.538,_=00.aj=1.2.*.

(deg)

-90

90
(= 1=0.1)

C
m

omcml

omcmi

omcml

cmcml

Euler

-.3466
-.8982

-.4675
-.2931

-.8553
-.594g

-.8182
-.5456

Theory

-.3194
-.8567

-.3724
-.3308

-.5733
-.4301

-.5733
-.4301
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